Archived
1
0

Converted analysis format to jupyter notebook.

This commit is contained in:
Shaun Setlock
2022-04-10 21:13:55 -04:00
parent 965ecb07f5
commit 3a9acf8c6f
5 changed files with 2323 additions and 2168 deletions

118
main/analysis.ipynb Normal file
View File

@@ -0,0 +1,118 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"from great_schools import get_nearby_schools\n",
"from secret import get_key"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Shaun and Daniela's Boston Public School Analysis\n",
"#### 2021.04.10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Fetch the API key from the local filesystem."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# get the API key\n",
"api_key_file = '../keys/api.key'\n",
"api_key = get_key(api_key_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use the `nearby_schools` API endpoint to grab raw data of all schools within the maximum radius"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"# Some columns will dropped immediately as pre-processing.\n",
"drops = [\n",
" 'nces-id',\n",
" 'school-summary',\n",
" 'street',\n",
" 'fipscounty',\n",
" 'phone',\n",
" 'fax',\n",
" 'web-site',\n",
" 'overview-url',\n",
" 'rating-description',\n",
"]\n",
"\n",
"# Grab data for Boston.\n",
"refresh = False\n",
"boston_nearby_schools_file = '../data/nearby_schools/boston.csv'\n",
"if refresh:\n",
" boston_schools = get_nearby_schools(api_key,\"42.3\",\"-71.2\",\"50\")\n",
" boston_df = pd.DataFrame.from_dict(boston_schools)\n",
" boston_df.drop(columns=drops,inplace=True)\n",
" boston_df.to_csv(boston_nearby_schools_file)\n",
"else:\n",
" boston_df = pd.read_csv(boston_nearby_schools_file)\n",
"\n",
"# Grab data for Buffalo.\n",
"refresh = False\n",
"buffalo_nearby_schools_file = '../data/nearby_schools/buffalo.csv'\n",
"if refresh:\n",
" buffalo_schools = get_nearby_schools(api_key,\"42.9625\",\"-78.7425\",\"50\")\n",
" buffalo_df = pd.DataFrame.from_dict(buffalo_schools)\n",
" buffalo_df.drop(columns=drops,inplace=True)\n",
" buffalo_df.to_csv(buffalo_nearby_schools_file)\n",
"else:\n",
" buffalo_df = pd.read_csv(buffalo_nearby_schools_file)"
]
}
],
"metadata": {
"interpreter": {
"hash": "4fc861b332db140b7b363b167627eee6a3238262e7c99e0237067fec0875fee7"
},
"kernelspec": {
"display_name": "Python 3.8.10 ('venv': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,27 +0,0 @@
#!/usr/bin/env python3
from secret import get_key
from great_schools import get_nearby_schools
import numpy as np
import pandas as pd
# Get secret.
api_key_file = '../keys/api.key'
api_key = get_key(api_key_file)
# Grab data for Boston.
refresh = False
if refresh:
boston_nearby_schools_file = '../data/nearby_schools/boston.csv'
boston_schools = get_nearby_schools(api_key,"42.3","-71.2","50")
boston_df = pd.DataFrame.from_dict(boston_schools)
boston_df.to_csv(boston_nearby_schools_file)
# Grab data for Buffalo.
refresh = True
if refresh:
buffalo_nearby_schools_file = '../data/nearby_schools/buffalo.csv'
buffalo_schools = get_nearby_schools(api_key,"42.9625","-78.7425","50")
buffalo_df = pd.DataFrame.from_dict(buffalo_schools)
buffalo_df.to_csv(buffalo_nearby_schools_file)