import pandas as pd file_path = './input/raw/postgres/total_electric_consumption_pg_id_40.csv' df = pd.read_csv(file_path) # Select only the necessary columns df = df[['start_ts', 'sum', 'state']] # Convert 'start_ts' column to datetime df['start_ts'] = pd.to_datetime(df['start_ts'], unit='s') # Save the data in the desired format to a text file output_file_path = './output/total_electric_consumption_pg_id_40.txt' with open(output_file_path, 'w') as f: for index, row in df.iterrows(): f.write(f" - start: \"{row['start_ts']}+00:00\"\n") f.write(f" state: {row['state']}\n") f.write(f" sum: {row['sum']}\n") print(f"Data saved to: {output_file_path}") file_path = './input/raw/postgres/total_electric_consumption_cost_pg_id_41.csv' df = pd.read_csv(file_path) # Select only the necessary columns df = df[['start_ts', 'sum', 'state']] # Convert 'start_ts' column to datetime df['start_ts'] = pd.to_datetime(df['start_ts'], unit='s') # Save the data in the desired format to a text file output_file_path = './output/total_electric_consumption_cost_pg_id_41.txt' with open(output_file_path, 'w') as f: for index, row in df.iterrows(): f.write(f" - start: \"{row['start_ts']}+00:00\"\n") f.write(f" state: {row['state']}\n") f.write(f" sum: {row['sum']}\n") print(f"Data saved to: {output_file_path}")