Automatic commit performed through alias...

This commit is contained in:
Shaun Setlock
2020-08-02 21:06:44 -04:00
parent b7bfa36d06
commit d543702af9
8 changed files with 611 additions and 0 deletions

View File

@@ -0,0 +1,280 @@
# # Problem 13:
#
# [Euler Project #13](https://projecteuler.net/problem=13)
#
#
# > Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.
#
# > 37107287533902102798797998220837590246510135740250
# > 46376937677490009712648124896970078050417018260538
# > 74324986199524741059474233309513058123726617309629
# > 91942213363574161572522430563301811072406154908250
# > 23067588207539346171171980310421047513778063246676
# > 89261670696623633820136378418383684178734361726757
# > 28112879812849979408065481931592621691275889832738
# > 44274228917432520321923589422876796487670272189318
# > 47451445736001306439091167216856844588711603153276
# > 70386486105843025439939619828917593665686757934951
# > 62176457141856560629502157223196586755079324193331
# > 64906352462741904929101432445813822663347944758178
# > 92575867718337217661963751590579239728245598838407
# > 58203565325359399008402633568948830189458628227828
# > 80181199384826282014278194139940567587151170094390
# > 35398664372827112653829987240784473053190104293586
# > 86515506006295864861532075273371959191420517255829
# > 71693888707715466499115593487603532921714970056938
# > 54370070576826684624621495650076471787294438377604
# > 53282654108756828443191190634694037855217779295145
# > 36123272525000296071075082563815656710885258350721
# > 45876576172410976447339110607218265236877223636045
# > 17423706905851860660448207621209813287860733969412
# > 81142660418086830619328460811191061556940512689692
# > 51934325451728388641918047049293215058642563049483
# > 62467221648435076201727918039944693004732956340691
# > 15732444386908125794514089057706229429197107928209
# > 55037687525678773091862540744969844508330393682126
# > 18336384825330154686196124348767681297534375946515
# > 80386287592878490201521685554828717201219257766954
# > 78182833757993103614740356856449095527097864797581
# > 16726320100436897842553539920931837441497806860984
# > 48403098129077791799088218795327364475675590848030
# > 87086987551392711854517078544161852424320693150332
# > 59959406895756536782107074926966537676326235447210
# > 69793950679652694742597709739166693763042633987085
# > 41052684708299085211399427365734116182760315001271
# > 65378607361501080857009149939512557028198746004375
# > 35829035317434717326932123578154982629742552737307
# > 94953759765105305946966067683156574377167401875275
# > 88902802571733229619176668713819931811048770190271
# > 25267680276078003013678680992525463401061632866526
# > 36270218540497705585629946580636237993140746255962
# > 24074486908231174977792365466257246923322810917141
# > 91430288197103288597806669760892938638285025333403
# > 34413065578016127815921815005561868836468420090470
# > 23053081172816430487623791969842487255036638784583
# > 11487696932154902810424020138335124462181441773470
# > 63783299490636259666498587618221225225512486764533
# > 67720186971698544312419572409913959008952310058822
# > 95548255300263520781532296796249481641953868218774
# > 76085327132285723110424803456124867697064507995236
# > 37774242535411291684276865538926205024910326572967
# > 23701913275725675285653248258265463092207058596522
# > 29798860272258331913126375147341994889534765745501
# > 18495701454879288984856827726077713721403798879715
# > 38298203783031473527721580348144513491373226651381
# > 34829543829199918180278916522431027392251122869539
# > 40957953066405232632538044100059654939159879593635
# > 29746152185502371307642255121183693803580388584903
# > 41698116222072977186158236678424689157993532961922
# > 62467957194401269043877107275048102390895523597457
# > 23189706772547915061505504953922979530901129967519
# > 86188088225875314529584099251203829009407770775672
# > 11306739708304724483816533873502340845647058077308
# > 82959174767140363198008187129011875491310547126581
# > 97623331044818386269515456334926366572897563400500
# > 42846280183517070527831839425882145521227251250327
# > 55121603546981200581762165212827652751691296897789
# > 32238195734329339946437501907836945765883352399886
# > 75506164965184775180738168837861091527357929701337
# > 62177842752192623401942399639168044983993173312731
# > 32924185707147349566916674687634660915035914677504
# > 99518671430235219628894890102423325116913619626622
# > 73267460800591547471830798392868535206946944540724
# > 76841822524674417161514036427982273348055556214818
# > 97142617910342598647204516893989422179826088076852
# > 87783646182799346313767754307809363333018982642090
# > 10848802521674670883215120185883543223812876952786
# > 71329612474782464538636993009049310363619763878039
# > 62184073572399794223406235393808339651327408011116
# > 66627891981488087797941876876144230030984490851411
# > 60661826293682836764744779239180335110989069790714
# > 85786944089552990653640447425576083659976645795096
# > 66024396409905389607120198219976047599490197230297
# > 64913982680032973156037120041377903785566085089252
# > 16730939319872750275468906903707539413042652315011
# > 94809377245048795150954100921645863754710598436791
# > 78639167021187492431995700641917969777599028300699
# > 15368713711936614952811305876380278410754449733078
# > 40789923115535562561142322423255033685442488917353
# > 44889911501440648020369068063960672322193204149535
# > 41503128880339536053299340368006977710650566631954
# > 81234880673210146739058568557934581403627822703280
# > 82616570773948327592232845941706525094512325230608
# > 22918802058777319719839450180888072429661980811197
# > 77158542502016545090413245809786882778948721859617
# > 72107838435069186155435662884062257473692284509516
# > 20849603980134001723930671666823555245252804609722
# > 53503534226472524250874054075591789781264330331690
#
#
# ---
import os
import pprint
import time # Typically imported for sleep function, to slow down execution in terminal.
import typing
import decorators # Typically imported to compute execution duration of functions.
import math
import numpy
# ### Import the data table above. Let's be lazy and use the nice multi-cursor feature of the code editor.
numbers = [ '37107287533902102798797998220837590246510135740250',
'46376937677490009712648124896970078050417018260538',
'74324986199524741059474233309513058123726617309629',
'91942213363574161572522430563301811072406154908250',
'23067588207539346171171980310421047513778063246676',
'89261670696623633820136378418383684178734361726757',
'28112879812849979408065481931592621691275889832738',
'44274228917432520321923589422876796487670272189318',
'47451445736001306439091167216856844588711603153276',
'70386486105843025439939619828917593665686757934951',
'62176457141856560629502157223196586755079324193331',
'64906352462741904929101432445813822663347944758178',
'92575867718337217661963751590579239728245598838407',
'58203565325359399008402633568948830189458628227828',
'80181199384826282014278194139940567587151170094390',
'35398664372827112653829987240784473053190104293586',
'86515506006295864861532075273371959191420517255829',
'71693888707715466499115593487603532921714970056938',
'54370070576826684624621495650076471787294438377604',
'53282654108756828443191190634694037855217779295145',
'36123272525000296071075082563815656710885258350721',
'45876576172410976447339110607218265236877223636045',
'17423706905851860660448207621209813287860733969412',
'81142660418086830619328460811191061556940512689692',
'51934325451728388641918047049293215058642563049483',
'62467221648435076201727918039944693004732956340691',
'15732444386908125794514089057706229429197107928209',
'55037687525678773091862540744969844508330393682126',
'18336384825330154686196124348767681297534375946515',
'80386287592878490201521685554828717201219257766954',
'78182833757993103614740356856449095527097864797581',
'16726320100436897842553539920931837441497806860984',
'48403098129077791799088218795327364475675590848030',
'87086987551392711854517078544161852424320693150332',
'59959406895756536782107074926966537676326235447210',
'69793950679652694742597709739166693763042633987085',
'41052684708299085211399427365734116182760315001271',
'65378607361501080857009149939512557028198746004375',
'35829035317434717326932123578154982629742552737307',
'94953759765105305946966067683156574377167401875275',
'88902802571733229619176668713819931811048770190271',
'25267680276078003013678680992525463401061632866526',
'36270218540497705585629946580636237993140746255962',
'24074486908231174977792365466257246923322810917141',
'91430288197103288597806669760892938638285025333403',
'34413065578016127815921815005561868836468420090470',
'23053081172816430487623791969842487255036638784583',
'11487696932154902810424020138335124462181441773470',
'63783299490636259666498587618221225225512486764533',
'67720186971698544312419572409913959008952310058822',
'95548255300263520781532296796249481641953868218774',
'76085327132285723110424803456124867697064507995236',
'37774242535411291684276865538926205024910326572967',
'23701913275725675285653248258265463092207058596522',
'29798860272258331913126375147341994889534765745501',
'18495701454879288984856827726077713721403798879715',
'38298203783031473527721580348144513491373226651381',
'34829543829199918180278916522431027392251122869539',
'40957953066405232632538044100059654939159879593635',
'29746152185502371307642255121183693803580388584903',
'41698116222072977186158236678424689157993532961922',
'62467957194401269043877107275048102390895523597457',
'23189706772547915061505504953922979530901129967519',
'86188088225875314529584099251203829009407770775672',
'11306739708304724483816533873502340845647058077308',
'82959174767140363198008187129011875491310547126581',
'97623331044818386269515456334926366572897563400500',
'42846280183517070527831839425882145521227251250327',
'55121603546981200581762165212827652751691296897789',
'32238195734329339946437501907836945765883352399886',
'75506164965184775180738168837861091527357929701337',
'62177842752192623401942399639168044983993173312731',
'32924185707147349566916674687634660915035914677504',
'99518671430235219628894890102423325116913619626622',
'73267460800591547471830798392868535206946944540724',
'76841822524674417161514036427982273348055556214818',
'97142617910342598647204516893989422179826088076852',
'87783646182799346313767754307809363333018982642090',
'10848802521674670883215120185883543223812876952786',
'71329612474782464538636993009049310363619763878039',
'62184073572399794223406235393808339651327408011116',
'66627891981488087797941876876144230030984490851411',
'60661826293682836764744779239180335110989069790714',
'85786944089552990653640447425576083659976645795096',
'66024396409905389607120198219976047599490197230297',
'64913982680032973156037120041377903785566085089252',
'16730939319872750275468906903707539413042652315011',
'94809377245048795150954100921645863754710598436791',
'78639167021187492431995700641917969777599028300699',
'15368713711936614952811305876380278410754449733078',
'40789923115535562561142322423255033685442488917353',
'44889911501440648020369068063960672322193204149535',
'41503128880339536053299340368006977710650566631954',
'81234880673210146739058568557934581403627822703280',
'82616570773948327592232845941706525094512325230608',
'22918802058777319719839450180888072429661980811197',
'77158542502016545090413245809786882778948721859617',
'72107838435069186155435662884062257473692284509516',
'20849603980134001723930671666823555245252804609722',
'53503534226472524250874054075591789781264330331690'
]
# Data Prep
# - Firstly, this data input creates a list which have cells of the ```string``` data type.
# - The strings should be parsed into type ```int``` at some point.
#
# ### Solution Approach
# Can we just employ old-school arithmetic by summing the integers by columns, right to left, <br>
# carrying over anything greater than *9* to the next column?
# loop over all 50 numbers in the input to convert the string
# into a list of characters, still as tpye: string
for row in range(len(numbers)):
numbers[row] = list(numbers[row])
# loop across the newly formed list to convert the string
# character into an integer
for digit in range(len(numbers[row])):
numbers[row][digit] = int(numbers[row][digit])
# time to employ the "old math" by running down the columns
# and summing... Dont forget to carry-over!
# Let's store the sums into a list...
solution_digits=[]
column_carryover = 0
print(len(numbers))
print(len(numbers[0]))
for places in range(len(numbers[0])):
# initialize the column sum
places = len(numbers[0])-places-1
#print(places)
column_sum = 0
for term in range(len(numbers)):
#print("row=",term,", column=",places)
column_sum+=numbers[term][places]
column_sum+=column_carryover
print(column_sum)
column_carryover=0
column_sum_element = int(list(str(column_sum))[-1])
solution_digits.append(column_sum_element)
column_sum *= 0.1
column_carryover = column_sum.__trunc__()
solution_digits.append(column_carryover)
print(solution_digits)
solution_digits.reverse()
string=""
for i in solution_digits[:10]:
string+=str(i)
print("The solution is ",string)

View File

@@ -0,0 +1,402 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Problem 13:\n",
"\n",
"[Euler Project #13](https://projecteuler.net/problem=13)\n",
"\n",
"\n",
"> Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.\n",
"\n",
"> 37107287533902102798797998220837590246510135740250\n",
"> 46376937677490009712648124896970078050417018260538\n",
"> 74324986199524741059474233309513058123726617309629\n",
"> 91942213363574161572522430563301811072406154908250\n",
"> 23067588207539346171171980310421047513778063246676\n",
"> 89261670696623633820136378418383684178734361726757\n",
"> 28112879812849979408065481931592621691275889832738\n",
"> 44274228917432520321923589422876796487670272189318\n",
"> 47451445736001306439091167216856844588711603153276\n",
"> 70386486105843025439939619828917593665686757934951\n",
"> 62176457141856560629502157223196586755079324193331\n",
"> 64906352462741904929101432445813822663347944758178\n",
"> 92575867718337217661963751590579239728245598838407\n",
"> 58203565325359399008402633568948830189458628227828\n",
"> 80181199384826282014278194139940567587151170094390\n",
"> 35398664372827112653829987240784473053190104293586\n",
"> 86515506006295864861532075273371959191420517255829\n",
"> 71693888707715466499115593487603532921714970056938\n",
"> 54370070576826684624621495650076471787294438377604\n",
"> 53282654108756828443191190634694037855217779295145\n",
"> 36123272525000296071075082563815656710885258350721\n",
"> 45876576172410976447339110607218265236877223636045\n",
"> 17423706905851860660448207621209813287860733969412\n",
"> 81142660418086830619328460811191061556940512689692\n",
"> 51934325451728388641918047049293215058642563049483\n",
"> 62467221648435076201727918039944693004732956340691\n",
"> 15732444386908125794514089057706229429197107928209\n",
"> 55037687525678773091862540744969844508330393682126\n",
"> 18336384825330154686196124348767681297534375946515\n",
"> 80386287592878490201521685554828717201219257766954\n",
"> 78182833757993103614740356856449095527097864797581\n",
"> 16726320100436897842553539920931837441497806860984\n",
"> 48403098129077791799088218795327364475675590848030\n",
"> 87086987551392711854517078544161852424320693150332\n",
"> 59959406895756536782107074926966537676326235447210\n",
"> 69793950679652694742597709739166693763042633987085\n",
"> 41052684708299085211399427365734116182760315001271\n",
"> 65378607361501080857009149939512557028198746004375\n",
"> 35829035317434717326932123578154982629742552737307\n",
"> 94953759765105305946966067683156574377167401875275\n",
"> 88902802571733229619176668713819931811048770190271\n",
"> 25267680276078003013678680992525463401061632866526\n",
"> 36270218540497705585629946580636237993140746255962\n",
"> 24074486908231174977792365466257246923322810917141\n",
"> 91430288197103288597806669760892938638285025333403\n",
"> 34413065578016127815921815005561868836468420090470\n",
"> 23053081172816430487623791969842487255036638784583\n",
"> 11487696932154902810424020138335124462181441773470\n",
"> 63783299490636259666498587618221225225512486764533\n",
"> 67720186971698544312419572409913959008952310058822\n",
"> 95548255300263520781532296796249481641953868218774\n",
"> 76085327132285723110424803456124867697064507995236\n",
"> 37774242535411291684276865538926205024910326572967\n",
"> 23701913275725675285653248258265463092207058596522\n",
"> 29798860272258331913126375147341994889534765745501\n",
"> 18495701454879288984856827726077713721403798879715\n",
"> 38298203783031473527721580348144513491373226651381\n",
"> 34829543829199918180278916522431027392251122869539\n",
"> 40957953066405232632538044100059654939159879593635\n",
"> 29746152185502371307642255121183693803580388584903\n",
"> 41698116222072977186158236678424689157993532961922\n",
"> 62467957194401269043877107275048102390895523597457\n",
"> 23189706772547915061505504953922979530901129967519\n",
"> 86188088225875314529584099251203829009407770775672\n",
"> 11306739708304724483816533873502340845647058077308\n",
"> 82959174767140363198008187129011875491310547126581\n",
"> 97623331044818386269515456334926366572897563400500\n",
"> 42846280183517070527831839425882145521227251250327\n",
"> 55121603546981200581762165212827652751691296897789\n",
"> 32238195734329339946437501907836945765883352399886\n",
"> 75506164965184775180738168837861091527357929701337\n",
"> 62177842752192623401942399639168044983993173312731\n",
"> 32924185707147349566916674687634660915035914677504\n",
"> 99518671430235219628894890102423325116913619626622\n",
"> 73267460800591547471830798392868535206946944540724\n",
"> 76841822524674417161514036427982273348055556214818\n",
"> 97142617910342598647204516893989422179826088076852\n",
"> 87783646182799346313767754307809363333018982642090\n",
"> 10848802521674670883215120185883543223812876952786\n",
"> 71329612474782464538636993009049310363619763878039\n",
"> 62184073572399794223406235393808339651327408011116\n",
"> 66627891981488087797941876876144230030984490851411\n",
"> 60661826293682836764744779239180335110989069790714\n",
"> 85786944089552990653640447425576083659976645795096\n",
"> 66024396409905389607120198219976047599490197230297\n",
"> 64913982680032973156037120041377903785566085089252\n",
"> 16730939319872750275468906903707539413042652315011\n",
"> 94809377245048795150954100921645863754710598436791\n",
"> 78639167021187492431995700641917969777599028300699\n",
"> 15368713711936614952811305876380278410754449733078\n",
"> 40789923115535562561142322423255033685442488917353\n",
"> 44889911501440648020369068063960672322193204149535\n",
"> 41503128880339536053299340368006977710650566631954\n",
"> 81234880673210146739058568557934581403627822703280\n",
"> 82616570773948327592232845941706525094512325230608\n",
"> 22918802058777319719839450180888072429661980811197\n",
"> 77158542502016545090413245809786882778948721859617\n",
"> 72107838435069186155435662884062257473692284509516\n",
"> 20849603980134001723930671666823555245252804609722\n",
"> 53503534226472524250874054075591789781264330331690\n",
"\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reserved Space For Imports\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pprint\n",
"import time # Typically imported for sleep function, to slow down execution in terminal.\n",
"import typing\n",
"import decorators # Typically imported to compute execution duration of functions.\n",
"import math\n",
"import numpy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reserved Space For Method Definition\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import the data table above. Let's be lazy and use the nice multi-cursor feature of the code editor."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"numbers = [ \\\n",
" '37107287533902102798797998220837590246510135740250',\n",
" '46376937677490009712648124896970078050417018260538',\n",
" '74324986199524741059474233309513058123726617309629',\n",
" '91942213363574161572522430563301811072406154908250',\n",
" '23067588207539346171171980310421047513778063246676',\n",
" '89261670696623633820136378418383684178734361726757',\n",
" '28112879812849979408065481931592621691275889832738',\n",
" '44274228917432520321923589422876796487670272189318',\n",
" '47451445736001306439091167216856844588711603153276',\n",
" '70386486105843025439939619828917593665686757934951',\n",
" '62176457141856560629502157223196586755079324193331',\n",
" '64906352462741904929101432445813822663347944758178',\n",
" '92575867718337217661963751590579239728245598838407',\n",
" '58203565325359399008402633568948830189458628227828',\n",
" '80181199384826282014278194139940567587151170094390',\n",
" '35398664372827112653829987240784473053190104293586',\n",
" '86515506006295864861532075273371959191420517255829',\n",
" '71693888707715466499115593487603532921714970056938',\n",
" '54370070576826684624621495650076471787294438377604',\n",
" '53282654108756828443191190634694037855217779295145',\n",
" '36123272525000296071075082563815656710885258350721',\n",
" '45876576172410976447339110607218265236877223636045',\n",
" '17423706905851860660448207621209813287860733969412',\n",
" '81142660418086830619328460811191061556940512689692',\n",
" '51934325451728388641918047049293215058642563049483',\n",
" '62467221648435076201727918039944693004732956340691',\n",
" '15732444386908125794514089057706229429197107928209',\n",
" '55037687525678773091862540744969844508330393682126',\n",
" '18336384825330154686196124348767681297534375946515',\n",
" '80386287592878490201521685554828717201219257766954',\n",
" '78182833757993103614740356856449095527097864797581',\n",
" '16726320100436897842553539920931837441497806860984',\n",
" '48403098129077791799088218795327364475675590848030',\n",
" '87086987551392711854517078544161852424320693150332',\n",
" '59959406895756536782107074926966537676326235447210',\n",
" '69793950679652694742597709739166693763042633987085',\n",
" '41052684708299085211399427365734116182760315001271',\n",
" '65378607361501080857009149939512557028198746004375',\n",
" '35829035317434717326932123578154982629742552737307',\n",
" '94953759765105305946966067683156574377167401875275',\n",
" '88902802571733229619176668713819931811048770190271',\n",
" '25267680276078003013678680992525463401061632866526',\n",
" '36270218540497705585629946580636237993140746255962',\n",
" '24074486908231174977792365466257246923322810917141',\n",
" '91430288197103288597806669760892938638285025333403',\n",
" '34413065578016127815921815005561868836468420090470',\n",
" '23053081172816430487623791969842487255036638784583',\n",
" '11487696932154902810424020138335124462181441773470',\n",
" '63783299490636259666498587618221225225512486764533',\n",
" '67720186971698544312419572409913959008952310058822',\n",
" '95548255300263520781532296796249481641953868218774',\n",
" '76085327132285723110424803456124867697064507995236',\n",
" '37774242535411291684276865538926205024910326572967',\n",
" '23701913275725675285653248258265463092207058596522',\n",
" '29798860272258331913126375147341994889534765745501',\n",
" '18495701454879288984856827726077713721403798879715',\n",
" '38298203783031473527721580348144513491373226651381',\n",
" '34829543829199918180278916522431027392251122869539',\n",
" '40957953066405232632538044100059654939159879593635',\n",
" '29746152185502371307642255121183693803580388584903',\n",
" '41698116222072977186158236678424689157993532961922',\n",
" '62467957194401269043877107275048102390895523597457',\n",
" '23189706772547915061505504953922979530901129967519',\n",
" '86188088225875314529584099251203829009407770775672',\n",
" '11306739708304724483816533873502340845647058077308',\n",
" '82959174767140363198008187129011875491310547126581',\n",
" '97623331044818386269515456334926366572897563400500',\n",
" '42846280183517070527831839425882145521227251250327',\n",
" '55121603546981200581762165212827652751691296897789',\n",
" '32238195734329339946437501907836945765883352399886',\n",
" '75506164965184775180738168837861091527357929701337',\n",
" '62177842752192623401942399639168044983993173312731',\n",
" '32924185707147349566916674687634660915035914677504',\n",
" '99518671430235219628894890102423325116913619626622',\n",
" '73267460800591547471830798392868535206946944540724',\n",
" '76841822524674417161514036427982273348055556214818',\n",
" '97142617910342598647204516893989422179826088076852',\n",
" '87783646182799346313767754307809363333018982642090',\n",
" '10848802521674670883215120185883543223812876952786',\n",
" '71329612474782464538636993009049310363619763878039',\n",
" '62184073572399794223406235393808339651327408011116',\n",
" '66627891981488087797941876876144230030984490851411',\n",
" '60661826293682836764744779239180335110989069790714',\n",
" '85786944089552990653640447425576083659976645795096',\n",
" '66024396409905389607120198219976047599490197230297',\n",
" '64913982680032973156037120041377903785566085089252',\n",
" '16730939319872750275468906903707539413042652315011',\n",
" '94809377245048795150954100921645863754710598436791',\n",
" '78639167021187492431995700641917969777599028300699',\n",
" '15368713711936614952811305876380278410754449733078',\n",
" '40789923115535562561142322423255033685442488917353',\n",
" '44889911501440648020369068063960672322193204149535',\n",
" '41503128880339536053299340368006977710650566631954',\n",
" '81234880673210146739058568557934581403627822703280',\n",
" '82616570773948327592232845941706525094512325230608',\n",
" '22918802058777319719839450180888072429661980811197',\n",
" '77158542502016545090413245809786882778948721859617',\n",
" '72107838435069186155435662884062257473692284509516',\n",
" '20849603980134001723930671666823555245252804609722',\n",
" '53503534226472524250874054075591789781264330331690'\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Prep\n",
"- Firstly, this data input creates a list which have cells of the ```string``` data type.\n",
"- The strings should be parsed into type ```int``` at some point.\n",
"\n",
"### Solution Approach\n",
"Can we just employ old-school arithmetic by summing the integers by columns, right to left, <br>\n",
"carrying over anything greater than *9* to the next column?"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# loop over all 50 numbers in the input to convert the string \n",
"# into a list of characters, still as tpye: string\n",
"for row in range(len(numbers)): \n",
" numbers[row] = list(numbers[row])\n",
" \n",
" # loop across the newly formed list to convert the string\n",
" # character into an integer\n",
" for digit in range(len(numbers[row])):\n",
" numbers[row][digit] = int(numbers[row][digit])\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "100\n50\n422\n467\n506\n512\n529\n538\n521\n493\n498\n459\n515\n506\n493\n507\n477\n501\n537\n519\n515\n478\n559\n542\n463\n508\n526\n534\n447\n528\n444\n530\n472\n500\n503\n497\n503\n476\n516\n487\n488\n470\n479\n493\n490\n523\n532\n556\n507\n493\n477\n553\n[2, 7, 6, 2, 9, 8, 1, 3, 8, 9, 5, 6, 3, 7, 7, 1, 7, 9, 5, 8, 9, 2, 3, 8, 6, 4, 7, 8, 4, 0, 2, 0, 3, 7, 3, 6, 6, 7, 8, 0, 9, 3, 0, 3, 2, 6, 7, 3, 7, 3, 55]\n"
}
],
"source": [
"# time to employ the \"old math\" by running down the columns\n",
"# and summing... Dont forget to carry-over!\n",
"\n",
"# Let's store the sums into a list...\n",
"solution_digits=[]\n",
"column_carryover = 0\n",
"\n",
"print(len(numbers))\n",
"print(len(numbers[0]))\n",
"\n",
"for places in range(len(numbers[0])):\n",
" # initialize the column sum\n",
" places = len(numbers[0])-places-1\n",
" #print(places)\n",
" column_sum = 0\n",
" \n",
" for term in range(len(numbers)):\n",
" #print(\"row=\",term,\", column=\",places)\n",
" column_sum+=numbers[term][places]\n",
" \n",
" column_sum+=column_carryover\n",
" print(column_sum)\n",
" column_carryover=0\n",
" column_sum_element = int(list(str(column_sum))[-1])\n",
" solution_digits.append(column_sum_element)\n",
"\n",
"\n",
" column_sum *= 0.1\n",
" column_carryover = column_sum.__trunc__()\n",
"\n",
"solution_digits.append(column_carryover)\n",
"print(solution_digits)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": "The solution is 55373762303\n"
}
],
"source": [
"solution_digits.reverse()\n",
"string=\"\"\n",
"for i in solution_digits[:10]:\n",
" string+=str(i)\n",
"\n",
"print(\"The solution is \",string)\n",
"#string.join(str(solution_digits[:10]))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}